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A reanalysis of McGurk data suggests that audiovisual fusion in
speech perception is subject-dependent
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Audiovisual perception of conflicting stimuli displays a large level of intersubject variability,
generally larger than pure auditory or visual data. However, it is not clear whether this actually
reflects differences in integration per se or just the consequence of slight differences in unisensory
perception. It is argued that the debate has been blurred by methodological problems in the analysis
of experimental data, particularly when using the fuzzy-logical model of perception �FLMP�
�Massaro, D. W. �1987�. Speech Perception by Ear and Eye: A Paradigm for Psychological Inquiry
�Laurence Erlbaum Associates, London�� shown to display overfitting abilities with McGurk stimuli
�Schwartz, J. L. �2006�. J. Acoust. Soc. Am. 120, 1795–1798�. A large corpus of McGurk data is
reanalyzed, using a methodology based on �1� comparison of FLMP and a variant with
subject-dependent weights of the auditory and visual inputs in the fusion process, weighted FLMP
�WFLMP�; �2� use of a Bayesian selection model criterion instead of a root mean square error fit in
model assessment; and �3� systematic exploration of the number of useful parameters in the models
to compare, attempting to discard poorly explicative parameters. It is shown that WFLMP performs
significantly better than FLMP, suggesting that audiovisual fusion is indeed subject-dependent,
some subjects being more “auditory,” and others more “visual.” Intersubject variability has
important consequences for theoretical understanding of the fusion process, and re-education of
hearing impaired people. © 2010 Acoustical Society of America. �DOI: 10.1121/1.3293001�

PACS number�s�: 43.71.An, 43.71.Rt �KWG� Pages: 1584–1594
I. INTRODUCTION

When a public demonstration of the McGurk effect
�McGurk and MacDonald, 1976� is presented to visitors or
students, there appears a large variability in the subjects’
audiovisual �AV� responses, some seeming focused on the
auditory �A� input, others more sensitive to the visual �V�
component and to the McGurk illusion. The existence of
possible differences in fusion would have important conse-
quences in both theoretical and practical terms. However, it
stays hotly debated, considering that subjects could actually
differ in pure auditory and visual performance rather than in
fusion per se. In the following, the major elements of discus-
sion and disagreement will be reviewed. Then it will be sug-
gested that the debate has been largely blurred by method-
ological problems. A way out of these problems will be
proposed, which will constitute the core of the present paper.
The objective is actually twofold: present a methodological
framework for analysis of audiovisual speech perception data
and show that this framework confirms that there are indeed
interindividual differences in the fusion process.

A. Interindividual differences in audiovisual fusion in
the speech perception literature

The possibility that subjects could put more or less
“weight” on the auditory or visual inputs is certainly not
new. It was, for example, the focus of a paper by Seewald et
al. �1985�, suggesting that there was a “primary modality for
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speech perception,” either auditory or visual. This hypothesis
has received less attention since the work by Massaro and
colleagues in the framework of the development of the
“fuzzy-logical model of perception” �FLMP�. Indeed, a cen-
tral assumption of the model is that, apart from possible dif-
ferences in auditory or visual perception, the fusion mecha-
nism per se is exactly the same for all subjects �Massaro,
1987, 1998�. The mechanism, actually a multiplicative pro-
cess applied to fuzzy-logical levels of confidence provided
by audition and vision on all possible answers, is considered
as being an optimal process, in the sense that “all sources
contribute to a decision but more ambiguous sources are
given less of a say in the decision” �Massaro, 1998, p. 115�.

A repeated claim by Massaro and colleagues is hence
that all subjects are “optimal integrators” and combine audi-
tory and visual evidence for available categories all exactly
in the same multiplicative way. Any difference in the output
of the audiovisual speech perception process would be only
due to differences in auditory and visual processing and
unisensory category tuning between subjects.

The hypothesis of a universal and optimal fusion mecha-
nism remains controversial, and was the object of a series of
experimental and modeling work by Grant and Seitz �1998�,
who claimed that, even when unimodal skill levels are taken
into account, large differences in individuals’ AV recognition
scores persist which “might be attributable to differing effi-
ciency in the operation of a perceptual process that integrates
auditory and visual speech information” �p. 2438�. The de-
bate further continued between Massaro and Cohen �2000�
and Grant �2002�. Actually, the question of possible intersub-

ject differences in AV integration, apart from being theoreti-
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cally challenging, has important potential practical applica-
tions. Indeed, if some subjects integrate the audio and visual
information less efficiently than others, the focus in a reha-
bilitation process �in case of hearing impairment for ex-
ample� should be put on the training of integration, rather
than just the training of auditory or visual abilities �Grant
and Seitz, 1998�. Incidentally, Rouger et al. �2007� claim to
have found that cochlear implanted subjects are better at in-
tegrating the sound and face of a speaker’s utterances than
normal hearing subjects.

In the last 15 years, a number of studies have shown
substantial individual variability in AV speech recognition.
Sekiyama and Tokhura �1991� showed that McGurk fusion
illusions were reduced in Japanese compared with English
participants. Since then, several studies have investigated
comparative language effects for audiovisual speech integra-
tion: English vs Japanese �Sekiyama and Tokhura, 1993;
Kuhl et al., 1994�, English vs Japanese vs Spanish �Massaro
et al., 1993�, Spanish vs German �Fuster-Duran, 1995�, or
German vs Hungarian �Grassegger, 1995�. A number of dif-
ferences have been reported. Some of them come from the
nature of the stimuli, differing from language to language.
However, there remain differences between linguistic groups
perceiving the same stimuli. Sekiyama and Tokhura �1993�
claimed that they reflect variations in the weight different
linguistic communities would attribute to the visual input in
the integration process. They suggested that the Japanese
community could make less use of the visual input because
of a cultural difference, namely, that “it may be regarded as
impolite in Japan to look at someone’s face” �p. 442�. On the
other hand, Massaro et al. �1993� and Kuhl et al. �1994�
interpreted these differences as coming from variations in the
inventory of linguistic prototypes rather than from social or
cultural variations in the tuning of the audiovisual process.
Indeed, Massaro et al. �1993� showed that their own data
displaying different audiovisual perception of conflicting AV
stimuli by English, Spanish, and Japanese subjects, could be
perfectly fitted by FLMP. In the FLMP fit, the differences
between English, Spanish, and Japanese subjects cannot be
due to differences in fusion: they are totally due to differ-
ences in the unimodal categorization responses.

More recently, Sekiyama et al. �2003� showed that the
very early ability to fuse auditory and visual inputs, dis-
played by a McGurk effect appearing as soon as 4 months in
infants’ speech perception �Burnham and Dodd, 1996, 2004;
Rosenblum et al., 1997�, was followed by a developmental
evolution of AV fusion after 6 years, and largely between 6
and 8 �Sekiyama and Burnham, 2004� for English children.
This increase could be the result of a learning process, and it
seems to be blocked in Japanese children, hence resulting in
the smaller role of the visual input in AV perception previ-
ously described. Once again, however, it could be argued that
this developmental pattern is just indicative of a develop-
ment of unimodal auditory and visual categories rather than
of integration per se. Basically, children �and particularly
English ones� would be progressively more and more accu-
rate in their perception of visual categories, hence the in-

crease in AV performance. In this reasoning, fusion would
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stay perfectly stable whatever the age, i.e., multiplicative and
optimal, in Massaro’s sense.

Finally, gender differences in audiovisual fusion have
been suggested in various papers, female subjects presenting
a higher level of audiovisual performance and a greater level
of visual influence on auditory speech �Irwin et al., 2006;
Strelnikov et al., 2009�, possibly linked to differences in the
cortical networks involved, with less left lateralization in fe-
males compared with males �Pugh et al., 1996; Jaeger et al.,
1998�.

B. A methodological caveat: the 0/0 problem in FLMP
testing

In a recent paper, Schwartz �2006� displayed a severe
technical problem in the comparison of FLMP with other
models when using corpora containing McGurk data. Indeed,
in the case of conflicting inputs, the audio and visual stimuli
provide at least one quasinull probability in each possible
category, and the multiplicative process implied by the
FLMP leads to AV predictions equal to 0/0, which is indeter-
minate. Therefore, any audiovisual response can be fitted by
the FLMP. The consequence is double. First, since FLMP
may predict any pattern of response in the McGurk case,
fitting McGurk data with FLMP cannot help determine if
variation in AV perception is actually due to differences in
unimodal behavior or in AV fusion. Second, the overfitting
ability of the FLMP with discrepant A and V stimuli might
well contaminate the global root mean squared error �RMSE�
criterion systematically used when FLMP is compared with
other models. For these reasons, it seems more appropriate to
use a Bayesian model selection �BMS� criterion, which in-
trinsically accounts for any overfitting problem �MacKay,
1992; Pitt and Myung, 2002; Schwartz, 2006�.

In this context, the present paper aims at reconsidering
the invariant vs subject-dependent audiovisual fusion prob-
lem, in a sound BMS framework. A classical test corpus of
audiovisual consonant-vowel stimuli extensively studied by
Massaro �1998� will provide a basis for assessing possible
discrepancies in audiovisual fusion between subjects, inde-
pendent of any linguistic or developmental effect. For this
aim, weighted FLMP �WFLMP�, a variant of FLMP explic-
itly incorporating subject-dependent weights of the audio and
visual inputs in integration, will be compared with FLMP.
This will provide the opportunity to use both BMS and
RMSE criteria on these two models. This will also lead to a
principled methodology for comparing audiovisual speech
perception models on a given set of data. This methodology
uses a so-called Laplace approximation of BMS, called
BMSL, together with a systematic assessment of the number
of really useful parameters in the models to compare, relying
on the BMS ability to deal with variations in the number of
degrees of freedom in these models.

Section II will recall the experimental material and pro-
vide a detailed description of the proposed methodology, to-
gether with the models to compare, and the assessment cri-
teria. In Sec. III, the obtained results will be presented,

before a discussion in Sec. IV.
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II. METHODOLOGY

A. Experimental material: The UCSC corpus of CV
audiovisual discrepant stimuli

The corpus considered here has been extensively used
for comparing audiovisual fusion models in speech percep-
tion �Massaro, 1998�. This corpus crosses a synthetic five-
level audio /ba/-/da/ continuum with a synthetic video simi-
lar continuum. The 10 unimodal �5A, 5V� and 25 bimodal
�AV� stimuli were presented for /ba/ vs /da/ identification to
82 subjects, with 24 observations per subject. The responses
are kindly made available by Massaro and colleagues on
their website �http://mambo.ucsc.edu/ps1/8236/�.

B. Model comparison

1. RMSE and corrected RMSE

Let us consider a given speech perception experiment
consisting in the categorization of speech stimuli involving
nE experimental conditions Ej, and in each condition, nC pos-
sible responses corresponding to different phonetic catego-
ries Ci. In most papers comparing models in the field of
speech perception, the tool used to compare models is the
“fit” estimated by the RMSE, computed by taking the
squared distances between observed and predicted probabili-
ties of responses, averaging them over all categories Ci and
all experimental conditions Ej, and taking the square root of
the result

RMSE = �� �
Ej,Ci

�PEj�Ci� − pEj�Ci��2�/�nEnC�	1/2
�1�

�observed probabilities are in lower case and predicted prob-
abilities in upper case throughout this paper�.

Considering that two models MA and MB might differ in
their number of degrees of freedom, Massaro �1998� pro-
posed to apply a correction factor k / �k−f� to RMSE, with k
the number of data and f the number of degrees of freedom
of the model �p. 301�. This provides a second criterion:

RMSEcor = k/�k − f��� �
Ej,Ci

�PEj�Ci�

− pEj�Ci��2�/�nEnC�	1/2
. �2�

2. BMSL

If D is a set of k data di, and M a model with parameters
�, the fit may be derived from the logarithm of the maximum
likelihood of the model considering the data set, that is the
value of � maximizing L�� 
M�=p�D 
� ,M�. However,
comparing two models by comparing their best fits means
that there is a first step of estimation of these best fits, and it
must be acknowledged that the estimation process is not
error-free. Therefore, the comparison must account for this
error-prone process, which is done in Bayesian model selec-
tion by computing the total likelihood of the model knowing
the data. This results in integrating likelihood over all model
parameter values. Taking the opposite of the logarithm of

total likelihood leads to the so-called BMS criterion that
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should be minimized for model evaluation �MacKay, 1992;
Pitt and Myung, 2002�:1

BMS = − log� L��
M�p��
M�d� . �3�

The computation of BMS through Eq. �3� is complex. It
involves the estimation of an integral, which generally re-
quires use of numerical integration techniques, typically
Monte Carlo methods �e.g., Gilks et al., 1996�. However,
Jaynes �1995� �Chap. 24� proposed an approximation of the
total likelihood in Eq. �9�, based on an expansion of log�L�
around the maximum likelihood point �:

log�L���� � log�L���� + 1/2��

− �����2 log�L�/��2���� − �� , �4�

where ��2 log�L� /��2�� is the Hessian matrix of the function
log�L� computed at the position of the parameter set � pro-
viding the maximal likelihood Lmax of the considered model.
This leads to the so-called Laplace approximation of the
BMS criterion �Kass and Raftery, 1995�:

BMSL = − log�Lmax� − m/2 log�2�� + log�V�

− 1/2 log�det���� , �5�

where V is the total volume of the space occupied by param-
eters �, m is its dimension, which is the number of free
parameters in the considered model, and � is defined by

�−1 = − ��2 log�L�/��2��. �6�

The preferred model considering the data D should minimize
the BMSL criterion. There are, in fact, three kinds of terms
in Eq. �5�. First, the term −log�Lmax� is directly linked to the
maximum likelihood of the model, more or less accurately
estimated by RMSE in Eq. �1�: the larger the maximum like-
lihood, the smaller the BMSL criterion. Then, the two fol-
lowing terms are linked to the dimensionality and volume of
the considered model. Altogether, they result in handicapping
models that are too “large” �that is, models with a too high
number of free parameters� by increasing BMSL.2 Finally,
the fourth term provides a term favoring models with a large
value of det���. Indeed, if det��� is large, the determinant of
the Hessian matrix of log�L� is small, which expresses the
fact that the likelihood L does not vary too quickly around its
maximum value Lmax. This means that the fit provided by the
model around its maximum likelihood point is stable: exactly
the contrary of FLMP with McGurk data, since its overfitting
abilities result in very rapid modifications of the prediction
even for very small changes in the unimodal values, making
the integration process quite unstable and oversensitive to
the tuning of free parameters in the model. Derivation of the
exact formula in Eq. �5�, together with a practical implemen-
tation of BMSL, can be found in http://www.icp.inpg.fr/
~schwartz/fichiers_pdf/BMSL_tutorial.pdf.

Bayesian model selection has already been applied to
the comparison of AV speech perception models, including
FLMP �see Myung and Pitt, 1997; Massaro et al., 2001; Pitt
et al., 2003�. However, this involved heavy computations of
integrals in Eq. �3� through Monte Carlo techniques, which

would be difficult to apply systematically in model compari-
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sons. BMSL has the advantage of being easy to compute and
to interpret in terms of fit and stability. Furthermore, if the
amount of available data is much higher than the number of
parameters involved in the models to compare �that is, the
dimension m of the � space�, the probability distributions
become highly peaked around their maxima, and the central
limit theorem shows that the approximation in Eqs. �4� and
�5� becomes quite reasonable �Walker, 1967�. Kass and Raf-
tery �1995� suggested that the approximation should work
well for a sample size greater than 20 times the parameter
size m �see Slate, 1999, for further discussions about assess-
ing non-normality�.

3. Estimating the “true” number of degrees of
freedom in a model

The number of model parameters in most model com-
parison studies in AV speech perception is generally kept
fixed to the “natural number of degrees of freedom” of the
model, that is, the number of free parameters necessary to
implement the model in its most extensive definition. Care is
generally taken to check that the models have basically the
same number of degrees of freedom; otherwise the RMSE
correction described previously could be applied. Notice that
this correction loses some sense if a parameter is introduced
with no effect on the model likelihood �a “useless param-
eter”� while BMSL naturally discards useless parameters
through the integration in formula �3�.

Of course, completely useless parameters generally do
not exist, since this would correspond to some kind of mis-
conception of the model. However, it is important to assess
the possibility that some parameters are not really useful in
the model behavior. For example, while all model compari-
sons generally involve a subject-by-subject assessment—and
it will also be the case here—it could be interesting to test if
some parameters could not, in fact, be similar from one sub-
ject to the other. The same could be done from one experi-
mental condition to the other. Therefore, various implemen-
tations of the models to compare will be systematically
tested, with a progressively increasing number of fixed pa-
rameters and thus a decreasing number of free parameters, in
order to attempt to determine the true number of degrees of
freedom of the model, that is, the number of free parameters
really useful, and providing the highest global likelihood of
the model knowing the data. Our basic assumption is that it
is under the condition of true number of degree of freedom
that models can be really assessed and compared in sound
conditions.

Decreasing the number of free parameters raises two
problems. First, the parameters to fix must be adequately
selected. This may be done on a statistical objective basis,
for example, through principal component analysis tech-
niques, but this results in combinations of parameters diffi-
cult to interpret. A heuristic approach was preferred in which
the observation of experimental data guided the selection of
possible parameters to be kept fixed from one subject to an-
other. The second problem is to estimate the value of the
parameters being kept fixed. This was done through a Round
Robin technique, in which a given parameter for one subject

is estimated from the mean value taken by the parameter in
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the whole corpus excluding the current subject from the
computation. This technique, classical and computationally
simple, prevents from any artifactual introduction of the cur-
rent data to model inside the “fixed” parameter used to
model the data in a circular approach, which would be inap-
propriate.

C. Models

Two models were compared, FLMP and a variant with
weighted contribution of the auditory and visual inputs in the
integration, WFLMP. For each corpus, each model �including
the variants associated with the decrease in the number of
degrees of freedom� was fitted to the data separately for each
subject. This enabled us to compute both mean values of the
selected criteria, averaged over all subjects, and to assess
differences between models by applying Wilcoxon signed-
rank tests over the compared criteria for each subject.

1. FLMP

In a speech perception task consisting in the categoriza-
tion of auditory, visual, and audiovisual stimuli, the FLMP
may be defined as a Bayesian fusion model with indepen-
dence between modalities, and the basic FLMP equation is

PAV�Ci� = PA�Ci�PV�Ci�/�
j

PA�Cj�PV�Cj� , �7�

Ci and Cj being phonetic categories involved in the experi-
ment, and PA, PV, and PAV the model probability of re-
sponses respectively in the A, V, and AV conditions.

2. WFLMP

The weighted FLMP model, called WFLMP, is defined
by

PAV�Ci� = PA
�A�Ci�PV

�V�Ci�/�
j

PA
�A�Cj�PV

�V�Cj� , �8�

where �A and �V are subject-dependent factors used to
weight the A and V inputs in the computation of the audio-
visual responses estimated by PAV�Ci� �see other introduc-
tions of weights inside FLMP in Schwarzer and Massaro,
2001; or for a similar kind of weighted fusion model applied
to speech recognition, in various implementations since Ad-
joudani and Benoît, 1996: see a review in Teissier et al.,
1999�. For each subject, a lambda value is defined between 0
and 1, and �A and �V are computed from lambda by: �A

=lambda / �1−lambda� and �V= �1−lambda� / lambda, with
thresholds maintaining �A and �V between 0 and 1. Figure 1
shows how lambda controls the weights �A and �V and how
this results in varying PAV from a value close to PA when
lambda is close to 0, to a value close to PV when lambda is
close to 1, passing by a value identical to the FLMP predic-
tion when lambda is set at 0.5, with �A and �V both equal

to 1.
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III. RESULTS

A. Analysis of individual experimental data

The UCSC corpus has been extensively used in AV
speech perception model assessment, generally with a good
fit using the FLMP and RMSE criterion �Massaro, 1998; see
also Massaro et al., 2001, for an assessment of FLMP with a
BMS criterion on this corpus�. However, looking at the data,
there seems to appear an effect not predicted by the FLMP,
that is, interindividual differences in AV interaction. This is
displayed in Fig. 2, showing two subjects with very close
auditory and visual performances, although with quite differ-
ent audiovisual responses. It seems that the weight of the
visual modality is, respectively, high for the first one �Fig.
2�a�� and low for the second one �Fig. 2�b��. Though the
FLMP does not incorporate A and V weights, the fit is, how-
ever, quite acceptable �with RMSE values, respectively, 0.04
and 0.02 for these two subjects�. This good fit is actually
obtained because of the 0/0 instability: indeed, the FLMP
simulation of unimodal data for the first subject is drawn
toward slightly more ambiguous values for A responses and
less ambiguous values for V responses �see Fig. 2�a��, while
the inverse is done for the second subject �see Fig. 2�b��.
This is the indirect way the FLMP may decrease the impor-
tance of a modality in fusion, by slightly but consistently
misfitting the unimodal data without introducing subject-
specific weights, and while keeping a very low RMSE value
�a very good fit� because of the 0/0 problem �Schwartz,
2006�. Such consistent misfits of unimodal data, if they hap-
pen in a significant number of cases, would indicate a prob-
lem in modeling. They should be taken into account in a
BMS criterion, although they are almost undetectable in a
RMSE criterion.

B. Selected degrees of freedom for FLMP and
WFLMP

The first implementation of FLMP needs ten parameters
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FIG. 1. �Color online� Variations in weighting coefficients �A and �V �left�
WFLMP. When lambda is close to 0, the audio weight decreases toward zero
to pV. Conversely, when lambda is close to 1, the audio weight increases to
value close to pA. Notice that for a lambda value at 0.5, both audio and vi
example, pV is set to 0.2 and pA to 0.8.
for each subject, that is five values Ai=PAi�/da/� and five
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values Vj=PVj �/da/� for the five stimuli of each continuum.
Since the WFLMP model needs one more parameter per sub-
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sual �bottom� data for subject 3 in UCSC corpus: data in solid lines and
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ject, one parameter was removed by fixing the value of the
parameter A5 �audio response for the fifth audio stimuli,
higher than 0.99 in average� at a value equal to the mean of
the value it takes for the other subjects.

To explain how the number of parameters was de-
creased, on Fig. 3 a sample of auditory and visual identifi-
cation curves is displayed for 10 of the 82 subjects. In the
audio results �Fig. 3�a��, the curves are all S-shaped from a
value close to 0 to a value close to 1, with less variation on
the sides �for A5, A1, and to a lesser extent A4 and A2�.
Therefore, it was attempted to fix these parameters, in this
order, with the Round Robin procedure. In the visual curves
�Fig. 3�b��, the configuration is different and suggests that it
should be possible to describe these curves by estimating
some values by a linear regression prediction on logit values
of Vi, that is, log�Vi / �1−Vi��. For this aim, two linear re-
gression predictions on logit values were defined, one pre-
dicting V2 and V4 from the parameters V1, V3, and V5, and
the other predicting V2, V4, and V5 from the parameters V1
and V3. Altogether, this lead to five variants of the FLMP
and WFLMP models, respectively, with 10, 6, 5, 4, and 3
free parameters per subject �Table I�.3

C. Modeling results

Figure 4 shows the results for the two models with their
five free-parameter variants. For each case, means and stan-
dard deviations computed on the modeling results for the 82
subjects are presented.

With ten parameters per subject, the FLMP fit is good,
with an average RMSE value at 0.051 �see Massaro, 1998, p.
64�. Interestingly, the fit is significantly better for the
WFLMP with the same number of free parameters, with an
average RMSE value at 0.0445 �since N=82 is higher than
20, z-ratios are used following a unit normal distribution, u
=4.92, p�0.001�. RMSE then logically increases when the
number of parameters decreases �Fig. 4�a��. The portrait for
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FIG. 3. �Color online� Left: audio identification for ten subjects. Right:
visual identification for ten subjects.
RMSEcor is the same �Fig. 4�b��. However, BMSL reaches a
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minimum for six parameters, both for FLMP and WFLMP
�Fig. 4�c��. In this variant of both models, A1 and A5 are
fixed, together with A4 for WFLMP. V2 and V4 are esti-
mated from V1, V3, and V5 by logit linear regression. For
this optimal six-parameter implementation, there is a signifi-
cant gain of WFLMP over FLMP �u=4.77, p�0.001�.

In Fig. 5, the histogram of logarithms of estimated
lambda values are plotted for all subjects for WFLMP with
six parameters. It appears that the range is indeed large, with
auditory subjects on the right of the 1-value and visual sub-
jects on the left. Under a criterion of �A /�V values, respec-
tively, higher than 1.5 or lower than 0.67 �1/1.5�, there are 33
“audio” and 14 “visual” subjects, the remaining 35 being
intermediary.

Figure 6 shows how WFLMP models the two subjects
compared in Fig. 2. Typically, the auditory and visual fits are
similar between subjects—as in the experimental data
themselves—while the good fit of the differences between
subjects in audiovisual values is due to large differences in
the lambda values, as shown on Fig. 5. This confirms that
subject �a� is rather visual �with a �A /�V ratio at 0.23� and
subject �b� is rather auditory �with a �A /�V ratio at 3.89�, as
suggested by the data themselves.

IV. GENERAL DISCUSSION

Two topics are addressed in the present work. One con-
cerns methodology for model comparison, which is of par-
ticular importance in audiovisual fusion, as evidenced by the
very large number of controversies regularly arising in the
domain. This also has implications for designing models for
audiovisual fusion in speech perception. The second one
concerns the invariant vs subject-dependent nature of audio-
visual fusion and more generally the parameters able to in-
tervene in fusion. These topics will be addressed one after

TABLE I. The five variants of FLMP and WFLMP. All fixed parameters are
estimated by the Round Robin technique.

No. of
parameters
per subject Parameters for FLMP

Parameters
for WFLMP

10 V1–V5, A1–A5 +lambda
A5 fixed

6 V1, V3, V5, A2, A3, A4
V2, V4 estimated by linear regression

A1, A5 fixed

+lambda
A4 fixed

5 V1, V3, A2, A3, A4
V2, V4, V5 estimated by linear regression

A1, A5 fixed

+lambda
A4 fixed

4 V1, V3, A2, A3
V2, V4, V5 estimated by linear regression

A1, A4, A5 fixed

+lambda
A2 fixed

3 V1, V3, A3
V2, V4, V5 estimated by linear regression

A1, A2, A4, A5 fixed

+lambda
V1 fixed
the other.
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A. An adequate methodology for comparing models

There are two important claims in our methodological
approach. First, a local criterion such as RMSE, or its quasi-
equivalent maximum likelihood criterion, can be inappropri-
ate, particularly in cases involving models which have a ten-
dency to overfit the data, e.g., with FLMP and McGurk data.
A global BMS criterion is theoretically sounder, as has been
discussed in a large number of papers, unfortunately not
much acknowledged in the speech perception community.
The local approximation provided by BMSL is simple to
compute, easy to interpret, and efficient assuming that the
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FIG. 4. �a� Compared RMSE values for FLMP vs WFLMP simulations with
three to ten free parameters per subject. �b� Compared corrected RMSE
values for FLMP vs WFLMP simulations with three to ten free parameters
per subject. �c� Compared BMSL values for FLMP vs WFLMP simulations
with three to ten free parameters per subject.
number of experimental data points is sufficient. In the
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present paper, it appears that RMSE and BMSL converge on
showing the superiority of WFLMP over FLMP for the
McGurk data. But this is not systematically the case �see,

Number
of subjects

0.15 0.35 1 2.5 7.5 �A/ �V

Subj. 3

Subj. 18

FIG. 5. �Color online� Histogram of �A /�V values controlling the fusion
process for the 82 subjects in the WFLMP model with six parameters. Val-
ues for subject 3 �data displayed in Fig. 1�a�� and subject 18 �data displayed
in Fig. 1�b�� are superimposed on the figure.
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FIG. 6. �Color online� �a� Audio �top left�, visual �top right�, and audiovi-
sual �bottom� data for subject 3 in UCSC corpus: data in solid lines and
predictions with WFLMP with six parameters in dotted lines. �b� Same as

Fig. 6�a� for subject 18 in UCSC corpus.
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e.g., Schwartz and Cathiard, 2004; Schwartz, 2006�. There-
fore, we suggest that any model comparison involving FLMP
based on a RMSE criterion should be taken cautiously, and
its conclusions should be considered as probably arguable
unless a new evaluation based on Bayesian model selection
is undertaken.

Second, varying the number of parameters in model as-
sessment is very important. Of course, the difficulty is that
there is much freedom in the strategies that can be proposed
for this principled reduction. This should involve both a
simple and intuitive approach, and a substantial number of
variants to be able to assess the approximate number of re-
ally meaningful parameters for comparing models.

In fact, these two claims are related. Decreasing the
number of parameters forces one to use a criterion able to
take the size of the model parameter set into account. This is
the case of BMS and its BMSL approximation, and not the
case of RMSE, in which any correction is largely arbitrary.
Variation in the number of parameters showed that there was
indeed some redundancy in the ten free parameters per sub-
ject involved in FLMP for the present corpus, six appearing
as a more plausible number of degrees of freedom �three for
the visual input, three for the audio input�. It is interesting to
note that a reduced number of degrees of freedom provided a
much larger difference in favor of WFLMP, compared with
the complete set of ten parameters.

B. Audiovisual fusion models

The present paper is focused on FLMP for methodologi-
cal reasons associated with its very frequent use in publica-
tions, and its excessive adaptability to McGurk data leading
in several cases to inappropriate or mistaken analyses of ex-
perimental results. However, FLMP is actually neither weak-
ened nor strengthened by the present paper.

It is not weakened since we proposed both an adequate
method for testing it in safer conditions—through the BMS
framework—and a possible variant with subject-specific
modulation—WFLMP—which could provide the route for
new developments more in line with evidence that fusion is
subject-dependent. Massaro and colleagues already intro-
duced both ingredients in some of their work, but the present
paper shows that they are actually required in any further use
of FLMP in speech perception, particularly �but not exclu-
sively� in experiments involving incongruent stimuli, as in
the McGurk effect.

It is not strengthened either, since the present analysis
could have been applied to other fusion models, such as
Braida’s pre- and postlabeling models �Braida, 1991; see also
Grant and Seitz, 1998; Grant, 2002�, with quite probably the
same conclusions. Actually, a number of models have been
recently developed explicitly taking into account the possi-
bility that one modality could be favored in the fusion pro-
cess. This is the point addressed by Ernst and colleagues
with their maximum likelihood framework according to
which integration would be “optimal” in leading to the larg-
est possible reduction in the variance of the multisensory
output. This is achieved by adaptively weighting modalities

in relation to their reliability �or variance� for the considered
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task �Ernst and Banks, 2002; Ernst and Bulthoff, 2004;
Denève and Pouget, 2004; Körding et al., 2007 and a pre-
cursor use of this concept in audiovisual speech perception
models in Robert-Ribes et al., 1995�. This “optimal integra-
tion” view is different from the optimal Bayesian fusion of
decisions implemented in FLMP, since it occurs at a precat-
egorical level.

C. What drives audiovisual fusion in speech
perception?

The major theoretical output of the present paper is that
it clearly shows that fusion is subject-dependent. There are
indeed large intersubject differences in audiovisual fusion for
speech perception, with various groups of subjects, some be-
ing more auditory, and others more visual. Many papers
mention such a large variability in audiovisual performance.
However, it was always unclear whether this was due to
differences in unisensory performance or multisensory inte-
gration. The present analysis strongly reinforces the second
view.

This opens the route to a number of questions about the
fusion mechanism itself. Differences between subjects in the
McGurk paradigm could result from a general “orientation”
of a given subject toward one or the other modality for indi-
vidual reasons �specific or related to, e.g., culture, language,
sex, or age�. They could also be the consequence of proper-
ties of the task or the experimental situation, which could
have driven the subject toward one rather than the other
stimulus input in a bimodal task.

1. Interindividual factors

It could well be the case that some subjects rely more on
audition and others more on vision, and that they weight
audiovisual fusion accordingly �see Giard and Peronnet,
1999�. Hence, it could be assumed that there is for a given
subject a general trend to favor one modality over another
one, whatever the task. This should result in future studies
comparing audiovisual fusion in various speech and non-
speech tasks, searching for individual portraits stable from
one task to the other. These different behaviors could also be
associated with differences in neuroimagery experiments, in
terms of the involved cortical networks and of the quantita-
tive role of each part in the global portrait.

We have already discussed in the Introduction possible
factors that likely to play a role in sensor fusion: some lan-
guages could use the visual input more than others �e.g.,
English more than Japanese�, female subjects could use it
more than males, and adults more than children. Notice that
the methodology employed here could be used to reanalyze
all data relevant for these claims, in order to carefully disen-
tangle the role of unimodal and multimodal factors in the
corresponding studies.

This opens an important question, which is to know to
what extent the weighting process can be dynamically modi-
fied during the subject’s life. We have already mentioned the
developmental evolution leading to an increase in the role of
the visual input �see e.g., Sekiyama et al., 2003; Sekiyama

and Burnham, 2004�. Recent data by Schorr et al. �2005�
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suggested that there is a critical period for the development
of audiovisual fusion in speech perception, before 2.5 years.
In the case of a perturbation of one or the other modality,
related to age or handicap, the question becomes to know if
a subject can, voluntarily or through any reeducation means,
selectively reinforce the weight of the most efficient modal-
ity.

In a recent study, Rouger et al. �2007� claimed that this
could indeed be the case, hearing impaired subjects equipped
with cochlear implants displaying, in their terms, “a greater
capacity to integrate visual input with the distorted speech
signal” �p. 7295�. Actually, these data should be considered
with caution, being a possible case of unimodal effects inter-
preted as bimodal. Indeed, Rouger et al. compared three
populations of subjects: hearing impaired subjects equipped
with cochlear implants �CIs�, normal hearing subjects with
audition degraded by noise �NHN�, and normal hearing sub-
jects presented with noise-band vocoder speech degrading
audition in a way supposed to mimic the cochlear implant
�NHV�. They showed that for a similar level of audio perfor-
mance, the audiovisual recognition is larger for CI than for
NHV, NHN being in the middle. Two factors could be, in
their view, responsible for this pattern: differences in the vi-
sual performance and in integration per se. A modeling ap-
proach leads them to claim that while the global visual
scores are actually better in CI compared with NHN and
NHV, there would be an additional gain in CH compared
with NHV, hence the claim about a “greater capacity to in-
tegrate visual input with the distorted speech signal.” Notice
that integration efficiency would be as high in NHN as in CH
according to their analysis. However, careful inspection of
auditory confusion matrices for NHV and NHN, available in
Rouger, 2007, shows that the structure of these matrices is
quite different. Importantly, the transmission of the voicing
mode was poorer in speech degraded with noise-band vo-
coder �NHV� than with white noise �NHN�, suggesting that
there could be a poorer complementarity in the audio and
visual inputs in NHV, logically resulting in lower audiovisual
scores. Differences in audiovisual performance would hence
result from the structure of the unimodal inputs �being less
complementary for normal hearing subjects presented with
noise-band vocoder speech� rather than from integration per
se. Actually, in this case, a study based on WFLMP and BMS
would probably not reveal any discrepancy in integration
between impaired subjects equipped with cochlear implants
�CI� and normal hearing subjects �NHV and NHN�.

2. Intraindividual factors

Finally, it is quite possible that the weight of one modal-
ity depends on the experimental situation per se. First,
stimuli themselves could possibly drive the weighting factor.
In a review of intersensory interactions, Welch and Warren
�1986� proposed “modality precision” or “modality appropri-
ateness” as a key factor in explaining which modality should
dominate intersensory judgments. Evidence for the role of
reliability in audiovisual fusion for speech perception can be
found in the study by Lisker and Rossi, 1992 on the auditory,
visual, and audiovisual identification of vocalic rounding.

Careful inspection of their data shows that although auditory
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identification seems in some cases quite accurate, there is a
systematic trend for putting more weight in the visual mo-
dality within audiovisual data, as if the subjects “knew” that
their eye was better than their ear at this particular task.
Conversely, Robert-Ribes et al. �1998� on their study of au-
diovisual vowel perception in noise reported that with a very
high level of noise, some subjects consistently select a given
response �e.g., �ø�� for all vowels in noise in the auditory
modality, which could lead in a model as FLMP to a large
probability of response of this category in the audiovisual
modality. However, this is not the case, showing that subjects
know that the auditory modality is not reliable at high levels
of noise and hence discards it almost completely from the
fusion process.

Second, the experimental conditions could lead to en-
hance or decrease the role of one modality in the fusion
process. Attentional mechanisms should play a role at this
level. Actually, while it had been initially claimed since
McGurk and MacDonald, 1976 that the McGurk effect was
automatic and not under the control of attention, it appeared
later that the instruction to attend more to audition or to
vision might bias the response �Massaro, 1998�. A recent set
of experiments by Tiippana et al. �2004� showed that if the
attention is distracted from the visual flow, the role of the
visual input seems to decrease in fusion, with less McGurk
effect. Notice that the authors themselves attempted to simu-
late their data with FLMP and argued that the good fit of
their data by a model claiming that fusion is automatic ap-
peared as “a paradox” �p. 458�. Actually, reanalysis of their
data in a BMS framework with a weighted FLMP suggests
that there are indeed attentional factors intervening in fusion
itself, independent of unimodal effects �Schwartz and Tiip-
pana, in preparation�. This is confirmed by a number of re-
cent experiments showing the possibility to modulate the
McGurk effect based on manipulations of attention �e.g., Al-
sius et al., 2005, 2007�, although here again, a precise analy-
sis of experimental results in a BMS framework could pro-
vide an adequate control for disentangling unimodal from
multimodal factors.

V. CONCLUSION

The present work proposed a new methodology for com-
paratively assessing models of audiovisual speech percep-
tion. This methodology is based on both the use of a Baye-
sian model selection criterion approximated in a
computationally simple way �BMSL� and on a systematic
variation in the number of degrees of freedom of the models
to assess, in order to reveal the “true” number of parameters
in a given model for a given task. The comparison of FLMP
with a variant with auditory and visual weights varying from
one subject to another �WFLMP� leads to the conclusion that
weights are indeed variable, and hence that audiovisual inte-
gration seems subject-dependent.

This could have important consequences in future stud-
ies about audiovisual speech perception. First, from a meth-
odological point of view, it suggests that studies on audiovi-
sual speech perception should consider these differences and

possibly separate experimental groups into “auditory” or “vi-

Jean-Luc Schwartz: Audiovisual fusion is subject-dependent

or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



Downloade
sual” subgroups based on such criteria such as McGurk per-
formance. Second, from an audiological point of view, this
indicates that subjects should be assessed based on their au-
diovisual fusion abilities, and considered differently—in
terms of reeducation and practice—depending on whether
they are more auditory or more visual in their behavior.

1In the following, bold symbols deal with vectors or matrices, and all
optimizations are computed on the model parameter set �.

2The interpretation of the term log�V� is straightforward and results in
handicapping large models by increasing BMSL. The term m /2 log���
comes more indirectly from the analysis and could seem to favor large
models. In fact, it can only decrease the trend to favor small models over
large ones.

3It could seem paradoxical to maintain the number of free parameters simi-
lar for each subject, while attempting to show interindividual differences.
This is not the case actually. The principle is to freeze as much as possible
the structure of the model for all subjects, in order to let the differences
appear in an objective way.
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